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Abstract—In order to provide some insight into the phenomenon of dynamic plastic buckling, the response
of an imperfection-sensitive idealised mode! with elastic-plastic springs to simulate material plasticity was
examined using theoretical and numerical methods.

The theoretical method predicts that dynamic plastic-elastic buckling governs the response for small
imperfections, while dysamic instability occurs clastically for large imperfections. Purthermore, the
dynamic buckling load of a mode! with small imperfections is larger than the corresponding static buckling
load because of the different elastic-plastic deformation histories in the springs during the static and

responses.

The numerical study reveals two distinct forms of dyaamic response known as “direct” and “indirect”
dynamic buckling which occur within specific ranges of the parameters.

The various results presented berein indicate that dynamic plastic buckling is imperfection-sensitive
particularly for “direct” dynamic buckling.

NOTATION
a LAk~
mo, m, masses defined in Fig. |
r L/L:

P dnphwnent defined in Fig. 1(b)
u;, 4y displacements of springs | and 2 in Fig. |
Yo vertical displacement in Fig. 1(b)
y nlls_
27 gL, 8L,
2, defined by eqn (26)
z* maximum value of z
F\, F, forces in springs | and 2, respectively
K, K, spring coefficients defined in Fig. 2
L,, L, length of members shown in Fig. 1(a)
P total vertical load as shown in Fig. 1(b)
P. Euler buckling load (eqn 5)
Pp dynamic buckling load
P, reduced modulus load (eqn 7)
P, tangent modulus load (eqn 6)
P*  maximum load
Q1, @, Q defined by eqns 4(j ~ 1), respectively
8 clnlnctmsbcforsoﬁemngnon-hnmsmnaatAmFia. 1(b)
€ w’leg?
A KIK
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£ initial imperfection indicated in Fig. 1(a)
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4, displacement at yield in springs 1 and 2

Af non-dimensional time step in numerical analysis
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1. INTRODUCTION

The phenomenon of dynamic plastic buckling, which is characterised by wrinkling as in static
buckling, may occur when structures are subjected to large external dynamic loads. It usually
develops during motor vehicle, train, aircraft and ship collisions and is of some interest in
aerospace, nuclear and petroleum engineering.

Perturbation methods of analysis have been used to explore successfully the unstable
dynamic plastic response of rods impacted axially[1), rectangular plates subjected to in-plane
loads{2, 3], cylindrical shells and rings acted on by various dynamic loads{4-6, etc.] and
spherical shells loaded impulsively[7,8]. This theoretical procedure is predicated on the
assumption that the characteristic wrinkling of structures associated with dynamic buckling
develops from initial imperfections in the geometry or impulsive velocity fields. Reference[6]
contains some comparisons between the theoretical predictions of perturbation analyses and
experimental results for cylindrical shells and rings loaded impulsively. Generally speaking,
these comparisons and those for several other structures show that the perturbation method
may provide reasonable estimates of the corresponding experimental values which are adequate
for design purposes. However, there are many dynamic plastic buckling problems for which the
perturbation method of analysis is unsuitable. These problems could be examined using
numerical schemes [9-11]. Unfortunately, it is an expensive and time-consuming exercise to
seek dynamic buckling loads with wholly numerical methods[12] so that valuable insight into
the general problem of dynamic plastic buckling is often lacking. Furthermore, Hartzman (9]
found that the dynamic buckling pressure of a particular elastic-plastic perfect spherical dome
was larger than the corresponding static collapse pressure in contradistinction to the obser-
vations of other authors for elastic caps subjected to step pressures of unlimited duration[13]).

Shanley[14] examined the behavior of a simple idealised model and obtained valuable
insight into the static inelastic buckling of a column. Sewell[15] discussed this topic further,
while Hutchinson[16] has explored the potential importance of initial geometric imperfections
on the static plastic buckling of a simple model. The influence of initial geometric imperfections
on the dynamic buckling of a simple elastic models has been investigated by Budiansky and
Hutchinson {17-19] and Danielson[20]. Huang and Tsai[21] used a phase-plane procedure to
investigate the dynamic snap-through behavior of a simple shallow elastic perfectly plastic truss
without bending and axial inertia effects.

In an attempt to gain some insight into the simultaneous influence of material plasticity and
initial geometric imperfections on dynamic buckling, a theoretical study is presented for the
idealised elastic linear work hardening imperfection-sensitive model shown in Fig. 1. This

(b)

Fig. 1. Simple model. (a) Initial position; (b) Deformed position.



On the dynamic buckiing of a simple elastic—plastic mode! m

idealised mode! is similar to that employed by Danielson{20], except that it is modified to
include the influence of material plasticity in a manner similar to Hutchinson[16] for static
loads.

2. BASIC EQUATIONS

The simple model shown in Fig. 1(a) was constructed by combining the essential features of
the models used in Refs. [16, 20). Danielson used the imperfection-sensitive mode! illustrated in
Fig. 1 of Ref.[20] to study the characteristics of dynamic elastic buckling, while the imper-
fection-sensitive model in Fig. 1 of Ref.[16] allowed Hutchinson to explore the static postbuck-
ling behaviour in the plastic range.

The various members in Fig. 1(a) are rigid and weightless and the only masses, m, and m,,
are concentrated at H and A, respectively. The unloaded model has a stress-free initial
imperfection ¢ while the member FHG is constrained to remain horizontal. Member FHG and
pin B are constrained to mover vertically in frictionless guides. Frictionless pins are located at
A, B and I and the behavior of the softening non-linear spring at A is governed by the relation
F = B¢, where ¢+ is the total horizontal displacement of A as indicated in Fig. 1(b). The
material behavior is simulated by springs 1| and 2 with the load-displacement characteristics

shown in Fig. 2 and, for convenience, it is assumed that the springs have identical charac-
teristics.
Now, it is straightforward to show that the deformations of springs 1 and 2 are

wm=u-rt and wuy=u+ré respectively, (la,b)
where

u=yo—£¢+29IL, @
provided (¢ + £)/L, < 1. The equations of motion may be written in the dimensionless form

&y"+ Qi+ Q2= Q2 (3a)

and

"= (z2+ Qi+ Q) - r(Q - Q2—az?=0, (3b)

when neglecting the vertical acceleration of m;, and where

y=yoll'29z=ﬂlqu—:gld’r=Llll’bwﬁz=2KIm0v
m.’=2Kr’lm,, €= m.’lwoz, a= Lgﬁlszz, Pc = Kth
QI=EIP¢:$Q!=F2/PnQ=P/PnT=WIt’ and

(Y =23()or (4a-m)
Fa
=t/
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Fig. 2. Elastic-plastic cheracteristics of springs | and 2.
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F, and F, are the forces in springs 1 and 2, respectively, while P is the external load applied at
H.

3. STATIC BEHAVIOR

The equations in the foregoing section predict that the static elastic Euler buckling load for a
perfect model (i.e. £=0)is

P.=KrL,, &)
while the tangent modulus buckling load is
P, =KrL,. 6
The reduced modulus load is
P =2KKrL /(K + K}) M

and occurs when bifurcation takes place with no change of the external load.
It is found for the imperfect case (i.e. £# 0) that

PIP.=z(1-az){(z+2) 8)
when springs 1 and 2 remain elastic. Thus,
(1-P*/P.)* = (4azXP*/P.), &)
where P* is the maximum load (buckling load) which occurs at the associated displacement
*=—7+(+ )" (10)
If 7 is sufficiently small, then egns (9) and (10) predict
P*|P.=1-(4a2)'?, 7=0. (11)

The elastic characteristics of the simple model in Fig. 1(a) according to the above equations are
illustrated in Fig. 3.

P p*
~_ & R
\\\
Y} 1.0

075 0715

05 4z = 0,025 0.5

0.25 0.25~

1 1 1 i 1 n
o 02 0.4 o 0.05 ol
az az

(a) {b)
Fig. 3. Static elastic characteristics of simple model, (a) eqn (8), (b) eqns (9) and (11).
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Spring number 2 first commences to respond plastically when », = A,, where A, is defined in
Fig. 2. If the initial imperfection ampfitude (£) is sufficiently small, thes toading continues with
spring number 2 deforming plastically and spring number 1 remsinlng elastic until eventually
spring swmber 1 becomes plastic when &, = A,. Fyrilher londing contimues with both springs
MMMWnumberlemmeMy Finally, spring
number 2 continues to load plastically and spring number 1 unloads elastically from its earlier
plastic state.

The maximum load P* may be expressed in the form

P*=P#—BLAH: +{(1+4K,L//BL)'"* - 1}(£ + 2)}, (12)

where
$=—Z+{2+2(r-25X1 + BL2/AK,L )2} (13)

is the value of z when spring number 1 commences to unload elastically and P} is the
maximum load that the simple perfect (£ =0) model can support. If bifurcation occurs at the
tangent modulus load given by egqn (6), then

Pi=P1+A(1-A{ar(1+A)}+....... ] (14)
and

P*/P}~1-(4az/r)'? (15)
for sufficiently small values of Z, where
A= Kfl K. (16)

The analysis of this sequence of loading which leads to eqns (12)-(15) is quite straightfor-
ward but the details are not presented here because Sewell[15] and Hutchinson[I6] have
discussed the static plastic behavior of simple models without and with initial imperfections,
respectively. In fact, eqns (12)<(15) are respectively similar to eqns (11), (10), (9)t and (12) in
Ref.[16]. The general features of the response sketched in Fig. 4 for this simple model confirm
the characteristics observed by Hutchinson for the model shown in Fig. 1 of Ref.[16].
However, of particular interest is the observation that eqns (11) and (15) demonstrate that the

1L.00f-¢

o2s}-
0 L 1 A i 1 i
o 006 0.42 0.8 024 0.30 ase

1}
Fn.‘.MmMdWU‘dm&b*(’)(ﬂ.m).m(mﬂ(ﬂ)(ﬁ).

and curve be is obtained with spring number | elastic and spring sumber 2 plastic. a= 10, r=1, A =0.75
and A,L,/L*=0.268.

1The analogy between the variables here and in Ref.[16] shows that the equation following Hutchinson's eqn (9) has 2ar
instead of ar as in eqn (14) here.
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simple model is more imperfection semsitive in the plastic range than in the elastic range
because an imperfection amplitude AZ giwes rise to the same relative reduction of the buckling
load as does Z in the olastic case. It is also evident from Fig. 4, for example, that an
imperfection may cause #he simple model to buckie in a wholly elastic manner even though the
perfect model would bmekie plastically. An interested reader is referred to Ref.[16] for further
discussion.

4. DYNAMIC BEHAVIOUR WITH mp=0
The dynamic behaviour of the simple model in Fig. 1 with m, = 0 when subjected to a step
loading of constant magnitude and infinite duration is explored in this section using a theoretical
analysis.
Equation (3a) with € = 0 (i.e. mgy=0) predicts

Q+Q=0Q (172)
so that eqn (3b) becomes
- Q(z+2)- Q- Q)2—az*=0 (17b)
with the associated initial conditions
2(0)=7'(0)=0. (17¢,d)

The characteristics of springs 1 and 2 are identical and are illustrated in Fig. 2.

4.1 Wholly elastic response
If it is assumed that the model remains elastic throughout the response then the forces in
springs 1 and 2 are respectively
Fi=K(u=-~rLyz) and Fy=K(u+rL,2) (18a,b)

according to eqns (1). Thus,

u=PRK (19a)
when using eqn (17a) and
Fi-F=-2KLyrz, (19b)
so that eqn (17b) becomes
2"+ (1= PIP,)z — az* = iP|P. (20)
which gives
2+ (1 - P/P.)2* - 2a2*|3 = 27zPI P, @n
when satisfying eqns (17¢, d).

Equation (20) is an autonomous equation so that it is suitable for a phase plane analysis
using the variables 2’ and z{22]. It is straightforward to show that there are two singular points
on the z axis (z'=0) one of which is a center or vortex point and the other a saddle point
according to the stability theorem[23). The maximum value of z = z* occurs when 2' =0 in eqn
(21) and is given by

z*=3{(1 - PIP,) £ {(1 - P|P.* - 16azP/3P.}'"?)/4a. (22)
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The largest possible value of P/P. occurs when the radical in eqn (22) is zero, or

(1- Pp/P.) = 16azP/3P,, (23)

where Pp is the dynamic buckling load. Equation (23) is also found from eqn (21) with z'=0
when differentiating with respect to z, then substituting z = z* and dP/dz* = 0. Moreover, the
value of z* according to eqn (22) with Pp given by eqn (23) coincides with the saddle point on
the z axis in the z'— z phase plane.

Now, in order for the foregoing analysis to remain valid it is necessary that springs 1 and 2
behave elastically throughout the entire response. This is assured if the force in spring number
2 remains less than the yield force (F> = KA,), or

Pp/Pc < (4aAJ3L; - 1X2ar3-1)"" (4

according to eqns (18b), (19a), (22) and (23). _

Budiansky and Hutchinson examined the dynamic elastic buckling of the idealised column
shown in Fig. 3 of Ref.[17] and uncovered a buckling criterion identical to eqn (23). Incidentally, if £
in eqn (23) is eliminated using eqn (9), then

Py/P*=0.75{(1 - Pp/P.)I(1 - P*|P.)} 25)

which as remarked in Ref.[17] gives 0.75 < Pp/P* <1, the lower values of P, being associated
with the more imperfect model.

4.2 Elastic-plastic response

It is evident for sufficiently large loads that plastic flow first occurs in spring number 2 just
as motion ceases according to equality (24). Thus, dynamic loads which violate inequality (24)
cause plastic flow in spring number 2 at some intermediate time during the response. This
suggests that the elastic analysis in Section 4.1 remains valid during a first phase of motion up
to some time when ;= A,, or

z,=AJL,-rPl2P.. (26)
The subsequent respoase is controlled by plastic behaviour in spring number 2, while spring
number |1 remains elastic.
The spring forces are therefore
Fi=F+Kw -a), and F=F+K(u-id) (27a,b)

during the second stage of motion, where all the barred quantities are evaluated at the end of
the first stage of motion. It is straightforward to show that

Fi-F=(K-K)u—-rL{K +K)z- (K- K)A,, (28a)
where
u=rL,2(K - K)I(K + K,)+ PK + K,)- A (K - K)I(K + K)). (28b)
Thus, eqns (17b), (26) and (28a) give
2"+ Az~az’= Blda, 222 (29)
where

A=20-PIP., 0=A(1+)), and
B =4a{zPIP, —(1- A)zJ(1 + A)}. (30a~)
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The phase plane method can be used to study eqn (29) and show that two singular
points occur on the z axis at

2,= (A= V(A*- B))/2a, (31a,b)
where 2, is a saddle point and 2, is a center or vortex point.
The first integral of eqn (29) is
2%+ A2 -2a2’13 = Bzl2a + (1 - A)z,2/(1+ A), 32)

where the constant of integration was found by matching z’ at the start of the second phase of
motion with eqn (21) at z,. The greatest value of z (say z*) on a closed trajectory in the phase
plane occurs when 2' =0, or

Az¥ =2az%[3= Bz*[2a + (1 - A)z} (1 + A). 33)

If the location of the saddle point 2z, given by eqn (31a) is identified with z*, then eqn (33) gives
2{A%+(A*— BY}/3— AB — (2az, (1 - A)/(1+ 1) =0, (34)

where P in eqns (30a) and (30c) for A and B is identified with the dynamic buckling load (Pp).

It should be noted that 2" =0 according to eqn (29) with z = z, , given by eqns (31).
Now, the foregoing theoretical analysis is valid provided z, 20, or ¥ <A, 1, which leads to

PuP. <2A)rL,, (39)

according to eqn (26). Moreover, Pp/P. must be larger than the r.h.s. of inequality (24) so that
this analysis remains valid when

(4aA,3L, - 1)Y2arl3-1)"'< PP <2AJrL,. (36)

4.3 Plastic-elastic response

The equality (35) is associated with 4 = A, which implies that springs 1 and 2 reach the yield
force (KA,) when ¢ =0. Thus, dynamic loads which violate inequality (35) would give rise to
plastic behavior in both springs prior to the motion of mass m,. The force in each spring is
equal when £ = 0 so that both must be either elastic as in Sections 4.1 and 4.2 or plastic as in the
present case. However, once m; commences motion (i.e. £>0) it is evident from eqns (1) that
spring 1 must unload elastically, while spring 2 continues to load plastically. In this circum-
stance it may be shown that

F,- F,=—-4rKK,L,z/(K + K,) (37a)
and
i=PRK,+(1-KIK)A, (37v)

is the compression of the springs immediately prior to the onset of motion of mass m,.
Equations (17b) and (37a) give

2"+(2Q0 - P|P.)z — az* = 3P|P, (38)

the solution of which must satsify the initial conditions (17c,d). If eqn (38) is solved in a
manner similar to the elastic case outlined in Section 4.1 here then

224+ (20~ P|P.)z* - 2az’|3=22:P/P, (39a)

tu refers to the first phase of motion and is given by eqn (19a).
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and the dynamic buckling load is given by the expression

(20~ Py/P.) = 16aZP/3P. (39b)

which reduces to eqn (23) when A = 1.
The foregoing analysis remains valid provided Po/P, =2A JrL, according to inequality (36).
Furthermore, we note eqn (39b) requires Pp/P. <20} so that

2AJrL, < Py/P, <20 (40)

in order for this analysis to be appropriate.

If the dimensionless initial imperfection (Z) is eliminated from eqn (39b) using the ap-
proximate expression for the maximum static load (P*) of the imperfect model (egn 15), then
for sufficiently small values of 7

PplP. =0.75(20 ~ Pp/P.Fl{A(1- P*|P$)}, “n

where P} is the maximum static load of the perfect model which is given by eqn (14). Equation
(41) with A =1 reduces to the corresponding equation for the dynamic elastic case which is
obtained from eqns (11) and (23) when £ is small.

A comparison of eqns (23) and (39b) reveals that the load associated with dynamic buckling
of the model in the plastic range is smaller than that required when both springs remain elastic.

5. UNLOADING WITH m,=0

The theoretical analysis in Section 4.1 for the wholly elastic response of the idealised model
in Fig. 1 remains valid for any reversed loading in springs 1 and 2 (i.e. 2’ <0) so that a complete
phase plane portrait may be constructed as shown in Fig. 5 for a particular case. However, the
analyses for dynamic elastic-plastic and plastic-elastic behavior in Sections 4.2 and 4.3,
respectively, only remain valid provided z' = 0. The deformations of springs 1 and 2 can reverse
and unload elastically when 2’ <0 leaving the springs stretched permanently as indicated in Fig.
2. The theoretical study in this section investigates the influence of elastic unloading in the
dynamic elastic—plastic and plastic-elastic cases to allow for completion of the phase-plane
portraits,

a =10
-0.0i5 a%xo02s

Fig. 5. Phase plane trajectories for the dynamic elastic case with m, =0. Equations (21) and (23) with
a=10, and af =0.25.
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5.1 Elastic-plastic case

It is evident from the theoretical study in Section 4.2 that spring number 1 in Fig. 1(a)
remains elastic throughout motion, while spring 2 is elastic initially during the first phase of
motion but behaves plastically when z =z, and z' 20 during a second phase of motion, where
z, is given by eqn (26). The forces (F%, F%) in springs 1 and 2 at the end of the second phase of
motion are given by eqas (27) with 2’ = (. If it is assumed that the subseguent behaviour of both
springs is elastic during a third phase of motion, then

Fi=K(u*-rLyz), and F,=F%-K(u}-u,), (42a,b)
where all variables with 2’ =0 at the end of the second phase of motion are indicated with an
asterisk (»).

It may be shown that eqns (1), (4), (5), (16), (27), (28b), and (42) give
Q-Q=20-1)*r(1+ 1)+ (1 -DQ(+A)—22/r-2(1- A)A,/{rL,(l +A)}, (43)
which allows eqn (17b) to be written
z"+(l—-Q)z-a22=(1—A)(z*+rQI2—A,IL|)I(l+)«)+iQ. (44)

The solution of eqn (44) which satisfies the conditions z = z* and z’ =0 at the start of the third
phase of motion is

?+(1-Q)2*~2a2*3=Cz+ D, (45)
where

C=22Q+2(1 - AXz*-z)/(1+ ) (46a)
and

D=(1=-A)z - z*)/(1+A) (46b)

when using eqn (32) to give z*.
Springs 1 and 2 remain elastic throughout the third stage of motion provided (¢*-—A,)=<
rlyz <rL,z*, or

(1-A)z*(A+A) -2z J(1+ )<z z* 47)

5.2 Plastic-elastic case

1t is evident from Section 4.3 that both springs 1 and 2 immediately respond plastically due
to a sufficiently large step loading P, but spring 1 then unloads elastically when motion
commences, while spring 2 continues to behave plastically. Thus, the response examined in
Section 4.3 consists of a single phase of motion which terminates when z = z*, where z* is
given by eqn (39a) with z' =0.

If it is assumed that the subsequent response of the idealised model in Fig. 1 is governed by
elastic behavior in springs 1 and 2, then

Fi=Pl2+ KrL(K - K))z*/(K + K,) - KrL,z (48a)
and
F,=PR-KrL(K - K,)z*/(K + K,)+ KrL,z, (48b)

where all variables with an asterisk () are evaluated when z' = 0 and z = z*. Thus, substituting
eqns (4), (5), (16) and (48) into eqn (17b) gives

"+(1-Qz—az?=Qz+(1-A)z*(1+1) (49
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which has the solution

2?+(1-Q)2*-2a3=Ez+F (50)
when satisfying z' =0 at z = 2* and where

E=2Qz+2A1-2)2%/(1+ ) (51a)
F==(1-2)z%(1+2) (51b)

and z* is given by eqn (39a) with 2'=0.
The springs 1 and 2 remain elastic for further motion provided

(1-2)z*(1+A)sz=2% (52)

6. NUMERICAL STUDY OF DYNAMIC BEHAVIOR WITH m#0
The theoretical analyses in Sections 4 and 5 were developed for the model in Fig. 1(a) with
mo =0, while in this section a numerical procedure is used to explore the dynamic buckling
response when mq # 0.
It is assumed, for convenience, that springs 1 and 2 have the same characteristics, which
are indicated in Fig. 2 and may be expressed in the form

Q=YrilP, a=12, 53)

where
Xa = Uol La, (54a)
=y-2(2+425)-rz, and x,=y-z2(z+2D)+n2 (54b, ¢)

from eqns (1) and (2). ¥, =1 when Q, <0, or when Q, <Q™>, where Q™ is the largest
dimensionless force subjected to spring a or the dimensionless yield load (A,/rL,) when no
plastic flow has occurred. ¥, = A when Q, = Q™* and Q, >0 and provided Q™*> A r/L,.

" Equations (3) may be written in the form

&y + P(Qim + Qun)2= Q2 (55a)

and
Z:.‘(Zu+f)(0m"'an)“'f(Qm“Qzu)lz“azuz=0, (55b)

where the subscript m implies evaluation of the variable at the dimensionless time 7,, and the
external load is a step load of constant magnitude and infinite duration.

Equations (55) may be recast into a set of non-linear algebraic equations using finite-
difference expressions[24) as shown in the accompanying Appendix. This set of equations was
solved at each time step using a standard Newton-Raphson iterative procedure[25]). Further
details of the numerical scheme are presented in the Appendix.

7. DISCUSSION

The phase plane portraits for the dynamic elastic-plastic and dynamic plastic-elastic cases
are respectively drawn in Figs. 6 and 7 for a particular set of parameters with mq=0. It is
evident from both of these figures that the dynamic response of the model remains entirely
clastic (i.c. mode! shakes down to an elastic state) after unloading from the state (2' =0, z = 2%)
provided P < Pp, where Pp is defined by eqns (34) and (39b). Thus, piastic behavior of the
idealised column in Fig. 1(a) with my =0 occurs only during the first excursion of m; with the
subsequent vibrations remaining clastic when P < Pp,

A composite curve for the dimensionless dynamic buckling loads Pp/P, associated with the
dimensionless initial imperfections aZ is plotted in Fig. 8 for a particular set of parameters and
compared with the corresponding static buckling results taken from Fig. 4. Inequality (24) is an
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Fig. 6. Phase plane trajectories for the dynamic elastic-plastic case with mg=0, a = 10, A =0.75, a7 = 0.05,
r=1and A,L,/L?=0.268. -~ elastic behavior, eqn (32).
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Fig. 7. Phase plane trajectories for the dynamic plastic—elastic case with mg=0, a =10, A =0.75 and
aZ = 0.025. -~ elastic behavior, eqn (39).

equality at point ¢ in Fig. 8 so that dynamic buckling of the model in Fig. 1 is controlied by
wholly elastic effects for larger initial imperfections (i.e. curve cd), while inequality (36) is
satisfied on the portion bc for which dynamic elastic-plastic buckling prevails. The point b is
associated with the left hand side of equality (40). Thus, dynamic plastic-elastic buckling
governs the behaviour of the model for small imperfections which lie on the curve ab. It is also
evident that 2 model with large initial imperfections might buckle elastically when subjected to
dynamic loads, while the same model with small initial imperfections would buckle plasticaily.
Furthermore, initial imperfections are as important for dynamic plastic-elastic buckling as they
are for dynamic elastic buckling (see also eqns 23 and 39b).
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The sequence of plastic loading and elastic unloading in springs 1 and 2 are different for the
static and dynamic loading cases shown in Fig. 8. If the initial imperfection is sufficiently small in
the static case, then both springs respond elastically until spring 2 yields plastically. Loading
continues with spring | elastic and spring 2 plastic until spring 1 yields plastically. Further static
loading continues with both springs responding plastically until spring 1 commences to unload
elastically. Finally, spring 2 continues to load plastically and spring 1 unloads elastically from
its earlier plastic state until the maximum load carrying capacity is reached.

The dynamic buckling load according to eqn (39b) for a perfect model equals the reduced
modulus load (202P.) because the inertia of the prebuckling response is neglected (i.e. mg = 0).
Thus, the external step loading P can be accomodated by springs 1 and 2 prior to any lateral
movement (£) of mass m,. In fact, the immediate response of both springs 1 and 2 is identical
for a given value of P, regardless of whether the mode! is initially perfect (aZ = 0) or has initial
stress-free imperfections (aZ# 0). The dynamic buckling loads in Fig. 8 are therefore larger than
the corresponding static ones for small imperfections which is due largely to the different
elastic—plastic deformation histories in the springs during the static and dynamic responses. It
should be noted that Hartzman{9] found that the dynamic buckling pressure of a geometrically
perfect elastic-plastic spherical dome was larger than the corresponding static buckling pres-
sure. However, the dynamic buckling loads for the model in Fig. 1(a) are smaller than the
associated static ones when the initial imperfections are larger than those corresponding to
point f in Fig. 8.

It is interesting to observe from the particular curves in Fig. 8 for models with initial
imperfections lying within the range 0.1230 < aZ < 0.1372 that static loads cause plastic buckling
while dynamic loads are responsible for elastic buckling.

A typical growth of the dimensionless displacement z* with the magnitude of the step load P
is shown in Fig. 9 for the elastic case according to eqn (22). The amplitude of z* is unbounded
when P = P, because the static post-buckling characteristics of the idealised model shown in
Figs. 3 and 9 are always unstable. The dynamic buckling load when plasticity occurs in the
model is not given by the intersection of the static and dynamic curves as shown for the elastic
case in Fig. 9, largely because the history of loading and unloading of springs 1 and 2 are
different for the two cases.

It is evident from Fig. 10 that the material strain hardening parameter (A) exercises an
important effect on the dynamic buckling characteristics and the model is more imperfection-
sensitive for smaller values of A.

The theoretical results discussed above and presented in Figs. 5-10 were obtained using the
analytical method outlined in Sections 4 and § which was simplified by taking mo = 0. In order
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EQUATION (B) (STATIC)

- EQUATION (22) (DYNAMIC)
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Fig. 9. Growth of maximum amplitude of z with PIP, according to eqns (8) and (22) for the static clastic
and dynamic slastic cases with g = 10, a2 =0.25 and my = 0.
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accordinig to eqn (3%b).

to explore the influence of my, or ay/wy, the method in Section 6 was used to obtain the

numerical results presented in Figs. 11-19.

The variation of z with dimensionless time 7 is shown in Fig. 11 when wi/we=0.316. It is
evident that a high frequency oscillation is superposed on a dominant mode which represents a
lateral vibration of the idealised column about a deformed state. The period of the dominant
mode grows as the vertical load P is increased until the dynamic buckling load Py/P, is reached
when a form of “direct” buckling{26] occurs and the amplitude of z (ie. z*) becomes
unbounded as indicated in Fig. 13 for several values of the dimensionless imperfection (Z). The
temporal variation of the dimensionless vertical displacement y shown in Fig. 12 is ap-
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Fig. 11. Variation of dimensionless displacement (2) with dimensionless time ¢ for w;/wg=0.316, A = 0.75,
4azjA =008, r=1,A,L,/L,*=0.268 and Ar = 0.025.
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Fig. 12. Variation of dimensionless displacement (y) with dimensionless time 1 for wi/ay=0.316, A =0.75,
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proximately two orders of magnitude larger than z and does not reflect any growth when
P = P, so that u,, u,, and u given by eqns (1a), (1b) and (2) would remain largely unaffected.
The dimensionless dynamic buckling load when wj/wy=0.316 in Fig. 14 is sensitive to the
magnitude of the dimensionless imperfection for both the elastic and elastic-plastic cases. In
fact, because of the factor 1/A in the abscissa, the idealised column in Fig. 1 is more
imperfection sensitive for dynamic buckling loads which cause an elastic-plastic response than
for those producing a wholly elastic behaviour.

The character of the response in Fig. 15 for wi/wy=0.75 is different to that when
w/op=0.316. In this case, high frequency vibrations are superposed on a dominant mode
having a very large period. The total duration of the numerical calculations is therefore
important and the buckling load was obtained in the present calculations as the smallest load
which caused z to exceed a specified value of z* within the interval 0 <r <100. This type of
behavior is similar to the “indirect” buckling phenomenon examined by Lock[26], who examined a
dynamic elastic buckling problem and the results in Fig. 17 indicate the rapid growth of z* as P is
increased towards the dynamic buckling loads found in the current study. Again, the amplitude of
the y displacements in Fig. 16 are approximately two orders of magnitude larger than z and are
insensitive to the dramatic changes of 2 near the dynamic buckling load. It is apparent from Fig. 18
that the resuits for the idealised model arc less imperfection-sensitive for “indirect” buckling when
wy/wo = 0.75 than the “direct buckling results for w,/w, = 0.316 in Fig. 14.



2% . 0.02
_ x & -
0.020 }— 3—:—£ 0,07 i‘)"i 0,001
0015 |
|
|
]
0.010} ;
|
|
o
.
! |
0005 [— : |
WA
‘ I
|
| |
! | |
i 1
0
0.5 075 )
P
fe

Fig. 13. Growth of maximum value of 2(z*) with dimensionless load
(PIPc) tor o fwo=0.316, A =0.7, r = 1, A,L,/L,> = 0.268 and Ar =
0.025.

Pp
Pc

04— ——&— ELASTIC -PLASTIC (A = 0,75)
—~ =0 — ELASTIC (A =1)

- w)
02 — = 0316
wo
-
o I f 1 L
© 005 o010 o015 020
402

A
Fig. 14. Variation of dimensionless dynamic buckling load. {PolP:)
with dimensionless initial geometric imperfection (Z) for elastic (A = 1)
and clastic-plastic (A =0.75) cases with w)fwe=0316, r=1,
A,LoJL\2=0.268 and At =0.025.

SIY S0a “W T "H pue Sanof ‘N



On the dynamic buckling of a simple elastic~plastic model 985

0.02
0.016
0012

0.008

0004

DO 20 40 60 80 100

Fig. 15. Variation of dimensionless displacement (z) with dimensionless time 7 for @ /we=0.75, A =0.75,
4azir =005, r=1,A,L,/L,* = 0268 and Ar = 0.05.
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Fig. 16. Variation of dimensionless displacement (y) with dimensionless time (r) for w,/wy =0.75, A =0.75,
4a2lA =005, r=1, A,L,/L,*=0.268, Pg/P. = 0383050005 and Ar =0.05.

The numerical values are summarised in Fig. 19 and the “direct” form of buckling (e.g. Fig.
11) is typical of the behaviour when 0 < w,/wy<0.5, while the “indirect” type of dynamic
buckling illustrated in Fig. 15 is typical of the response when 0.5 < a/wg < 1. The sensitivity of
the dynamic buckling load to the magnitude of the time step Ar used in the numerical study is
also indicated in Fig. 19 when ,/wp = 0.316. However, the numerical results appear to be less
sensitive for the “indirect” buckling case because, when w,/wy=0.75 and the values of the
remaining parameters are given in the title of Fig. 19, the dimensionless buckling load (P,/P.) is
0.38165, 0.38155, and 0.38305 for dimensionless time steps (A7) of 0.02, 0.03 and 0.05, respectively.

The general form of the numerical results in Fig. 19 is similar to that found by Danielson[20)
for the wholly elastic case. In fact, Danielson’s approximate theoretical result for 0 < o)/ay <
0.5 is the same as eqn (23) here which predicts Pp/P. = 0.8 for the parameters used in Fig. 19.
Danielson’s approximate theoretical predictions for the range 0.5 = w)/wy < 1.0 is given by eqn
(16b) in Ref.[20] which lies slightly below the numerical values in Fig. 19.

The numerical calculations demonstrate the extremely complicated dynamic buckling
behaviour of the simple idealised model illustrated in Fig. 1 when subjected to a step loading
which is the most severe form of loading according to Kao and Perrone[13). As already
remarked, the dynamic buckling load is sensitive to the duration of the numerical calculations
(i.c. maximum value of r) which is particularly evident in Fig. 15 for the “indirect” buckling
case and to a lesser extent for the “direct” buckling behaviour in Fig. 11. In addition, the
maximum acceptable values of z(z*) must be specified in order to determine a dynamic
buckling load. The numerical results in Figs. 11-19 were obtained with either 2* =0.015 or
z*=(.02 and Figs. 13 and 17 indicate that the dynamic buckling loads are insensitive to the
values of z* having these magnitudes. However, the magnitude of the dynamic buckling load
would be sensitive for smaller values of z*, while the dimensionless time = when the dynamic
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buckling load is reached would be sensitive to z* regardless of its value. Thus, it is important to
specify the values of z* and 7,,, associated with the numerical calculations of a dynamic buckling
load.

A comparison between Figs. 8 and 14 reveals that the dynamic elastic-plastic results with
my # 0 lic above the corresponding static elastic-plastic values, a circumstance which was also
found when m, = 0 for initial imperfections smaller than those corresponding to point f in Fig.
8. The dynamic elastic buckling curves in Figs. 8 and 14 both lic below the corresponding static
elastic values. It is evident from Figs. 8 and 18 that due to the different nature of the buckling
response both dynamic results in Fig. 18 lie below the corresponding static values. The dynamic
elastic-plastic buckling curves in Fig. 18 lic above the associated dynamic elastic results when
w/wp=0.75 a phenomenon which was not predicted by the simple theoretical analysis with
my =0 (/e = 0) for “direct” buckling in Section 4.

The influence of damping was neglected in the present study. Lock[26] examined the effect
of viscous damping in his theoretical investigations on the elastic instability of a shallow
sinusoidal arch. Damping was found to reduce the “indirect” snapping pressure and to be
responsible for an increase in the “direct” snapping pressure. In other words, the dynamic
buckling pressures were closer to the corresponding critical static pressures than were those
without damping and the effect was particularly marked for the “indirect™ snapping case. In the
present study, the dynamic buckling loads are less than the corresponding static loads except
for the “direct™ dynamic elastic-plastic instability results in Fig. 14 for w,/wy=0.316 and the
dynamic plastic-elastic results with imperfections smaller than those at f in Fig. 8.

It is important to emphasise that the theoretical predictions and discussion herein refer only
to the idealised model shown in Fig. 1(a) with a restricted range of parameters. However, it
might be expected that some features of the response would be reflected in the dynamic
behaviour of actual structures as already remarked with regard to Hartzman’s[9] numerical
investigation on a spherical dome.

8. CONCLUSIONS

The imperfection-sensitive idealised model illustrated in Fig. 1, which has elastic-plastic
springs to simulate material plasticity, was subjected to a step loading and the response
examined using theoretical and numerical methods. An exact theoretical solution was
developed in Sections 4 and § for the particular case when m, = 0 (i.¢. w,/wy = 0), while a numerical
scheme was presented in Section 6 for the more general case when wy/wy # 0.

It was found that the stable response of the model with m, =0 shakes down to an elastic
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state after any plastic behaviour during the first excursion of m,. Dynamic plastic-elastic
buckling governs the response for small initial imperfections, while instability occurs elasticially
for large imperfections. It transpires that the dynamic buckling load of a model with small
imperfections is larger than the corresponding static buckling load because of the different
elastic-plastic deformation histories in the springs during the static and dynamic responses.

The numerical study for a model with my# 0 (i.e. w,/wy # 0) reveals two different types of
dynamic buckling which are similar to those observed by Lock(26] for a dynamic elastic
buckling problem. A “direct” form of dynamic instability occurs when 0 < w,/wy < 0.5 while an
“indirect” type is associated with 0.5 < w,/wy < 1.0.

The various results presented herein indicate that dynamic plastic buckling is imperfection-
sensitive particularly for *“direct” buckling within the range 0 < w,/wy <0.5.
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APPENDIX
This appendix contains the details of the numerical scheme used to solve eqns (55).
Now, for sufficiently small time increments, the dimensionless forces in springs 1 and 2 at the dimensionless time 7,, are
related to the forces in the springs at .., in the following manner:

Qﬂ = Q-(.—I)"'vc{xm _x_‘._“},,z (Al)



On the dynamic buckling of a simpie elastic~plastic model 989
which when using eqns (54) give

Qi + Qo = A+(Cyn - C2,} - Ez,, - Gl (AZ)
Qin = Qo = B+(Dyn - Dgt - Fz, - H)IP (A2b)
where
A= Quu-nt Gom-1n B = Quu-ty~ Quim-11»
C=¥,+V¥, D=¥ -V, E=V¥,02I+r)+¥(2f-1),
F=¥Q2i+0)-¥YQ2Z-1), G=¥Xypu-1)+¥oXym-p
H =¥ Xy y= ¥oXxm-1) (Ada-h)
The dimensionless accelerations in eqas (55) are approximated using Houbolt's third order backwards finite-difference
scheme(24)
9= (0uYm + BuYu-1+ YaYu-2+ SnYu- (A1) + ¥, (AY)

and a similar expression for 25 with Z, instead of Y., where Ar is the dimensionless time step, and the coefficients
O ™2, B =5, Yn =4, Sa=—1and Y, =Z, =0 provided m =3 when m =0 refers to the initial conditions at r =0,
Now the fictitious deflections y_, and y_, may be expressed in terms of y,, ¥4, y6, and y, by using standard finite-difference
expressions for yi and y§ (e.g. oqns (B3) and (B7) in Ref.[24]). It turns out with the initial conditions yy= y§=0 and
Yo=rQl2e that ag=fo=%=&=0, Vo=, ay==p=6, y,=8=0, Y, =-PQle ay=y=2, py=-4, 5=0 and
Y, =Y,/2. Similar results are obtained for z,, except 25 =0 giving Zy= 2, = Z, =0,

Thus, substituting eqns (A2) and (A4) into eqns (55) gives a set of non-linear algebraic equations which were solved at
each time step using a standard Newton-Raphson iterative procedure[25). For this purpose the algebraic equations were

recast in the form
a,; ap &) _[P AS
[azl azz]p. {51};,.. {Pz};,.. W3
where yi' =y + 8y’ and z0t! = 2./ + 82/ when j is the j iteration cycle at dimensionless time 7., =mAr and
ay= GGJ(A‘T):"' m, ap=- CZ,,,I - m,
dy=-C(E+z)r-Dir,
an = aJ(ATP~ A~ (Cy/ - C2f - Bz, - G)IP
+(2C2 + EXzal + 2P + (2Dz,! + F)I2r - 2az,),
Py =~ e(apyu + BuYiuo1 + YmVi-2+ SuyluM(AT)
—(Y,, -r’Aﬂ-(Ch"‘CZﬁ-EZJ'G)ﬁ"'f'Q/Z.
Py = — (! + BuZl-1 + YmZin-2+ Buzln s (A7~ Zy + a2ty
+(z! + D} A+(Cyal - C2h - Bzl - )P}
+ B2+ (Dy,! - Dzf — Fzi - H)2r. (Abe-f)
The iterations were terminated at 7,, when

8y + (82 VMl Y + (2! P2 = 1071, (AD
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